JABALPUR ENGINEERING COLLEGE, JABALPUR (M.P.) ## Choice Based Credit System (CBCS) Scheme of Examination w.e.f. Bachelor of Engineering (Industrial Production Engineering) | EMESTER III | | | Maximum Marks Allitted | | | | | | | _ | Hours / Week | | | | | | |-------------|-----|-----------------|--|-------------|---------|-------------|------|----|-----|----------|--------------|-------------|------|---------------|-----|------------------| | No Category | | Subject
Code | Subject Name | | | Theor | У | | - | | ctical | - 8 | · | \Box | | Total
Credits | | | | | | THE End Sem | Minor I | 33 Minor II | Quiz | | 1 | Find Sem | Trab Work | Assignments | L | T1 | PIZ | 4 | | 8 | | | - CONTACT | 60 | 10 | 10 | 5 | 5 | 10 | | 20 | 20 | . 2 | 1 | 2 | 4. | | 1 | EAS | | MATERIAL SCIENCE | 60 | 10 | 10 | 5 | 5 | 10 | 10 | | - | 2 | 1 | 2 | 4 | | 2 | DC | IP-232 | STRENGTH OF MATERIALS | 60 | 10 | 10 | 5 | 5 | 10 | 10 | 20 | 20 | - | - | 1 | 1. 4 | | 3 | DC | IP-233 | The state of s | 60 | 10 | 10 | 5 | 5 | 10 | | | 100 | 3 | $\frac{1}{1}$ | 2 | 4 | | 4 | DC | IP-234 | THERMODYNAMICS | 60 | 10 | 10 | 5 | 5 | 10 | 10 | 20 | 20 | | + | 2, | 2 | | | DC | IP-235 | MANUFACTURING PROCESS | 60 | 10 | 10 | 5 | 5 | 1.0 | 10 | 20 | | 1 | + | 4. | 1 2 | | 6 | | HU-236 ' | | + | + | 1 | 7 | | | | - | 50 | - | 2 | 14 | 1. : | | 7 | | IP-237 . | IDEA GENERATION | - | 1. | + | | | | | | | | - | 12 | _ | | - | | IP-23.8 | LEARNING THROUGH EXPERTS | 261 | 60 | 60 | 30 | 30 | 60 | 40 | 80 |) 13 | 0 1. | <u></u> | | | 360 L : Decture T: Tutorial P: Practical TOTAL ### Note: - For 'Idea Generation', Learning through Experts'; there will be no examination and credits will be awarded only on the basis of internal assessment. - For Material Science, 60% content will be common to all disciplines and 40% content will be based on parent discipline. Material Science TP-23 Objectives: The course introduces several advanced concepts and topics in the rapidly evolving field of material science. Students are expected to develop comprehension of the subject and to gain scientific understanding regarding the choice and manipulation of materials for engineering applications. ### Outcomes: 1. To acquire basic understanding of advanced materials, their functions and properties for technological applications. 2. To emphasize the significance of materials selection in the design process 3. To understand the principal classes of bio-materials and their functionalities in modern medical science 4. To get familiarize with the new concepts of Nano Science and Technology 5. To educate the students in the basics of instrumentation, measurement, data acquisition, interpretation and analysis Crystal Atoms of Solid: Structure of atom binding in solids metallic, space lattice and crystal system arrangement of atoms in BCC, FCC and HCP crystal. Mechanical, Electrical, thermal, Magnetic & optical Properties of materials Types of materials. Plastic deformations of metals: Point and line defects in crystals, their relation to mechanical properties, deformation of metal by slip and twinning, stress strain curves of polycrystalline materials, Cold and hot working of metals and their effect on mechanical properties. Alloy Formation and Binary diagram: Phase in metal system solution and inter-metallic compounds. Hume-Rottery's rules, solidification of pure metals and alloy equilibrium diagrams of iso-morphous, eutectic, peritectic and eutectoid system Iron carbon equilibrium diagram. Heat treatment of Alloys: Principles of heat treatment of steel TTT curves Heat treating processes, normalizing, annealing and spherodizing, hardening, tempering, Case hardening austempering, mar-tempering, precipitation hardening process with reference to AI, Cu alloys. Engineering Materials & their applications: Ferrous & Non ferrous metals, base alloys, bronze brasses and Duralumin. Study of Advanced materials: Shape memory alloys, Carbon nano tubes, composite materials, Smart materials Powder Metallurgy: Property and application of powder metallurgy, various processes and methods of making products by powder metallurgy techniques. Polymers & Plastics, their properties & applications in engineering Refractory materials. ## **EVALUATION** Evaluation will be continuous an integral part of the class as well through external assessment. ## References: 1. Narula GK, KS and Gupta VK; Material science; Mc Graw Hill Education Andel DEAN CARRICAND ## PROGRAMME: B.E. Industrial Production Engineering III-Semester Strength of Materials IP-232 Objectives: To familiarize the students with the fundamentals of deformation, stresses, strains in structural elements. ### Outcomes: At the completion of this course, students should be able to 1. Know the concepts of stress and strain. 2. Analyze the beam of different cross sections for shear force, bending moment, slope and deflection. 3. Understand the concepts necessary to design the structural elements and pressure Stress and strain: stresses in members of a structure, axial loading, normal stress, shear stress, analysis of simple structures, stepped rods, members in series and parallel: stress strain diagram, Hooke's law, stress due to temperature, Poisson's ratio, Bulk modulus, shear strain, relation among elastic constants, residual stress, fiber reinforced composite materials, strain energy under axial loads and stresses due to impact of falling weights. Transformation of stress and strain, principal stresses, normal and shear stress, Mohr's circle and its application to two and three dimensional analysis. Bending: pure bending, symmetric member, deformation and stress, bending of composite sections, eccentric axial loading, shear force and BM diagram, relationship among load, shear and BM, shear stresses in beams, strain energy in bending, deflection of beams, equation of elastic curve, Macaulay's method and Area moment method for deflection of beams. Torsion in shafts: Tensional stresses in a shafts, deformation in circular shaft, angle of twist, stepped and hollow transmission shafts . Theories of failures: maximum normal stress & shear stress theory; maximum normal and shear strain energy theory; maximum distortion energy theory; application of theories to different materials and loading conditions. Columns & struts: stability of structures, Euler's formula for columns with different end conditions, Rankine's formula. ## **EVALUATION** Evaluation will be continuous an integral part of the class as well through external assessment. - 1. Beer FP, Johnson Mechanics of Materials, Sixth Edition; Mc Graw Hills - Debabrata Nag & Abhijet Chanda :Strength of Materials : Wiley - Rattan; Strength of materials; Second Edition, Mc Graw Hills - 4. Nash William; Schaum's Outline Series; forth Edition Strength of Materials; Mc Graw Hills - 5. Singh Arbind K; Mechanics of Solids; PHI - 6. Sadhu Singh; Strength of Materials; Khanna Pub. - 7 R Subramannian, Strength of materials OXFORD University Press, Third Edition. - 8 S Ramamurthum, Strength of materials, Dhanpat Rai ### List of experiments: - 1. Standard tensile test on MS and CI test specimen with the help of UTM - 2. Direct/ cross Shear test on MS and CI specimen - 3. Transverse bending test on wooden beams to obtain modulus of rupture - 4. Fatigue test - 5. Brinell Hardness tests - Vicker hardness test - 7. Izod/Charpy test - 8 Rockwell Hardness test Alex Makel Theory of Machines & Mechanisms IP- 233 To expose the students to learn the fundamentals of various laws governing rigid bodies and its Outcomes: At the completion of this course, students should be able to know motions. - 1. Basic mechanisms, velocity and acceleration of simple mechanisms - 2. Drawing the profile of cams and its analysis - 3. Gear train calculations, Gyroscopes - 4. Inertia force analysis and flywheels - 5. Balancing of rotating and reciprocating masses Mechanisms and Machines: Links, Pairs, Chains, Structure, Mechanism, Machine, Equivalent linkage, Degrees of freedom, Gruebler's & Kutzback's criterion, Inversions of four bar chain, Mechanism with lower pairs Pantograph, Straight line motion mechanisms, Davis and Ackermann's steering mechanisms, Hooke's joint, Numerical problems based on above topics. Motion: Plane motion, Absolute & Relative motion, Displacement, Velocity and Acceleration of a point, Velocity and Acceleration Analysis by Graphical & Analytical methods, Velocity image, Velocity of rubbing, Kennedy's Theorem, Acceleration image, Acceleration polygon, Coriolis acceleration component, Klein's construction, Velocity and Acceleration Analysis using Complex Algebra (Raven's Approach), Numerical problems based on above topics Gears: Classification of gears, Helical, Spiral, Bevel, Worm and Spur Gear, Spur Gear Terminology, Law of gearing, Tooth profiles, , velocity of sliding, Path of contact, Arc of contact, Contact Ratio, Interference and Undercutting, , Conjugate action, Numerical problems Gear Trains: Simple, compound, reverted and epi cyclic gear trains. Velocity ratio and torque calculation in gear trains Cams: Classification of Cams and Followers, Radial Cam Terminology, Analysis of Follower motion (uniform, modified uniform, simple harmonic, parabolic, cycloidal), Pressure Angle, Radius of Curvature, Cam Profile for radial and offset followers Synthesis of Cam Profile by Graphical Approach, Cams with Specified Contours. Gyroscope: Gyroscopic Action in Machines, Angular Velocity and Acceleration, Gyroscopic torque/ couple, Gyroscopic effect on Naval Ships, Stability of Two and Four Wheel Vehicles, Rigid disc at an angle fixed to a rotating shaft. Belt Rope & Chain Drive: Types of Belts, Velocity ratio of a belt drive, Slip in belts; Length of open belt and crossed belt, Limiting ratio of belt-Tensions, Power transmitted by a belt, Centrifugal tension, Maximum tension in a belt, Condition for maximum power transmitted, Initial tension in a belt, Creep in belt, Applications of V-Belt, Rope and Chain drives. Evaluation will be continuous an integral part of the class as well through external assessment. ## Reference: - 1. Thomas Bevan; Theory of Machines; Pearson Education - 2. Rattan SS; Theory of machines; MC Graw Hills - 3. Ambekar AG; Mechanism and Machine Theory; PHI. Eastern Economy Edition 2015 - 4 Uicker & Shigley, Theory of machines & Mechanism Second Edition Oxford University Press - 4 Dr. Jagdish Lal; Theory of Machines; Metropolitan Book Co; Delhi - 5 Rao JS and Dukkipati; Mechanism and Machine Theory; New Age Delhi. 6 Abdulla Shariff, Theory of Machines. ## List of Experiments: - 1 Study of various types of the governors & calculate out sensitivity and stability of Governors 2To finds out gyroscopic couple. - 3 To Find out velocity & acceleration of slider crank mechanism by Klin's Construction Thermodynamics IP-234 Objectives: To develop ability and gain insight into the process of problem-solving, with emphasis on thermodynamics. Specially in following manner: apply conservation principles (mass and energy) to evaluate the performance of simple engineering systems and cycles, evaluate thermodynamic properties of simple homogeneous substances, analyze processes and cycles using the second law of thermodynamics to determine maximum efficiency and performance, discuss the physical relevance of the numerical values for the solutions to specific engineering problems and the physical relevance of the problems in general, and critically evaluate the validity of the numerical solutions for specific engineering Outcomes: At the completion of this course, students should be able to problems. 2. draw thermodynamic processes on pressure-temperature, pressure-volume, or temperature-1. find values of thermodynamic properties in tables; volume diagrams; 3. use compressibility charts; 4. calculate expansion or compression work in a closed system; 5. use conservation of mass to determine the change in mass of a system Basic Concepts & Laws of Thermodynamics: Basic concepts: Property, Equilibrium, State, Process, Cycle, Zeroth law of thermodynamics, Heat and work transfer. First law of thermodynamics- first law applied to various systems steady flow process, limitations of first Second law of thermodynamics, heat engine, heat reservoir, Refrigerator, heat pump, Carnot's cycle, statements of second law Reversible and irreversible processes, consequence of second Inequality, Entropy, T-S diagrams, Available & Unavailable energy Availability Concept. Properties of Steam: Pure Substance, Phase, Phase-transformations, formation of steam, properties of steam, PVT surface, HS, TS, PV, PH, TV diagram, processes of vapor measurement of dryness fraction, Use of steam tables and Mollier chart. Air standard cycles: Carnot, Otto, Diesel, Dual cycles and their comparison, Brayton cycle, Non reactive gas mixture, PVT relationship, mixture of ideal gases, properties of mixture of ideal gases, internal energy, Enthalpy and specific heat of gas mixtures. Fuels & combustion: Actual & theoretical Combustion processes, Enthalpy of formation & enthalpy of reaction, first law analysis of reacting systems, Adiabatic flame temperature, Basic Steam Tables Mollier Charts & tables connected to reactive systems are allowed in Examination hall. ## EVALUATION Evaluation will be continuous an integral part of the class as well through external assessment. Market Market DEAN Academic Manufacturing Process TP-235 To make the students aware of different manufacturing processes like casting, metal forming, metal cutting and gear manufacturing. ## Outcomes: - 1. Concepts of casting Technology. - 2. Mechanical working of metals. - 3 Concepts of welding process - 4 Concept of forging methods - 5 Understanding press working. Casting: Types of casting process . Molding and Foundry core sands and their properties, gating, runners, risers, solidification, defects and elimination, molding machines, centrifugal casting, dye casting, shell molding; Lost wax molding; continuous casting; cupola description Welding: Types of welding, Gas welding method, flames, gas cutting, Electric arc welding, AC and DC welding machines and their characteristics, flux, electrodes, submerged arc welding, TIG & MIG welding; pressure welding; electric resistance welding spot, seam and butt welding; Thermit chemical welding; brazing and soldering, welding defects & remedies safety Pattern Making: Types of patters, Pattern and pattern making, pattern allowances; pattern design considerations, core, core boxes. Forging: types of forging operations Theory and application of forging processes description;, drop and horizontal forging machines. Press working: Description and operation of processes, process of shearing, punching, piercing, blanking, trimming, perfecting, notching, lancing, embossing, coining, bending, forging and drawing; press, tool dies, auxiliary equipment, safety devices, stock feeders, scrap cutters, forces, Rolling: Types of Rolling operations, General description of machines and process; rolling of structural section plates and sheets; hot and cold rolling techniques Metal Machining: Basics of Lathe machines, operations & components, working principle of Shaper & planner, Introduction to milling, grinding and drilling machines. ## EVALUATION Evaluation will be continuous an integral part of the class as well through external assessment. - 1. Anderson and Tetro; Shop Theory; Mc Graw Hills - 2. Kaushish JP; Manufacturing Processes; PHI Learning. - 3 Kalpakjian Producting Engineering PEARSON Education - 4. Chapman; Workshop Technology - 5. Philip F Ostwald; Manufacturing Process & systems: John Wiley - 6. Raghuvanshi; Workshop Technology; Dhanpat Rai. - 7 Hajra Choudhary; Workshop Technology;, Vol I ## COURSE CONTENT & GRADE (w.e.f. July 2016) | Branch | Subject Title | Subject
Code | | le for
Sem | CGPA at the end of every even semester | | | |--------|------------------------|-----------------|------------|---------------|--|--|--| | | | Couc | T | P | | | | | BE III | COMMUNICATION
SKILL | CHU-236 | Min
"D" | Min
"D" | 5.0 | | | COMMUNICATION SKILL Max:60 ## **Course Objectives:** - Student will be able to learn and understand the four major Skills of Communication i.e. LSRW (Listening, Speaking, Reading and Writing) - Student will be able to write effective job application to show employers that they deserve to be shortlisted for an interview - Student will be able to meet high professional expertise with the help of much developed written and communication skills - Students' comprehension skills will be enhanced. Constituents of Technical Communication: Fundamental of Grammar usage, Requisites of Sentence Construction, Proper Use Tenses, antonyms, Idioms and phrases, synonyms, homophones; The art of Condensation, Paragraph Development Techniques, Writing Bibliography and References Basics of Technical Communication: Distinction between Technical and General Communication, Flow of Communication, 7 C's of Effective Communication, Overcoming the Barriers to Communication, Role of Feedback in communication. Listening and Reading Skills for Effective Communication: Importance of Listening in Communication, Difference between Listening and Hearing, Types of Listening. Techniques of Reading, SQ3R, Proof Reading. Developing Oral Communication: Interpersonal Communication, Facilitators and Impediments of interview and Group Discussion, Presentation Strategies: Defining Purpose, Organizing Contents, Preparing Outline, Audio-Visual Aids, Nuances of Delivery, Importance of Paralanguage and Kinesics in Communication, Audience Awareness, Setting and Achieving Goals Written Communication: Writing Curriculum Vitae, Letter and Cover Letter and Job Application; Letter Components and Layouts, Principles of Effective Letter Writing, E-mail etiquettes, Notice Agenda and Minutes, Writing Proposals: Nature and Significance, Types of Proposals, Parts of a Formal Proposal; a brief recap of Formats of Report Writing. DEAN Academic JEC, Jabalpur (M.P.) P